metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hong-Ping Xiao,* Qian Shi and Ming-De Ye

School of Chemistry and Materials Science, Wenzhou Normal College, Zhejiang, Wenzhou 325027, People's Republic of China

Correspondence e-mail: hp_xiao@wznc.zj.cn

Key indicators

Single-crystal X-ray study T = 293 KMean σ (C–C) = 0.010 Å Disorder in solvent or counterion R factor = 0.084 wR factor = 0.172 Data-to-parameter ratio = 11.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Di-µ-5-hydroxyisophthalato-bis[aqua(1,10phenanthroline)copper(II)] trihydrate

In the title compound, $[Cu_2(C_8H_4O_5)_2(C_{12}H_8N_2)_2(H_2O)_2]$ -3H₂O, the Cu complex forms a centrosymmetric dimer with a Cu···Cu separation of 8.198 (3) Å. In the 5-hydroxy-isophthalate ligands, two carboxylate groups coordinate two copper(II) cations in μ_2 -bridging bidentate coordination modes.

Received 10 September 2004 Accepted 17 September 2004 Online 30 September 2004

Comment

Encouraged by our successful synthesis of coordination polymers using transition metals, 1,4-benzenedicarboxylic acid and 1,10-phenanthroline, which showed a diversity of structures (Sun *et al.*, 2001; Xiao, Hu & Li, 2004; Xiao, Li *et al.*, 2004; Zhu *et al.*, 2004), we investigated the effect of replacing 1,4-benzenedicarboxylic acid with 5-hydroxyisophthalic acid. In a mixed solvent of dimethylformamide and methanol at room temperature, we obtained the title compound, (I).

In (I), each Cu^{II} cation has a five-coordinate environment consisting of one aqua O atom, two carboxyl O atoms belonging to two 5-hydroxyisophthalate anions and two N atoms from a 1,10-phenanthroline molecule (Fig. 1). The geometry around the Cu^{II} cation is distorted square-pyramidal. The basal plane $[O3^i/O6/N1/N2;$ symmetry code: (i) -x + 2, y + 2, -z + 2] is built of two 1,10-phenanthroline N

O 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The coordination environment of copper in (I), showing the atom numbering and displacement ellipsoids at the 30% probability level. Unlabelled atoms are related to labelled atoms by 2 - x, 2 - y, 2 - z.

Figure 2

The crystal packing of (I), viewed along the *b* axis. Intermolecular hydrogen bonds are indicated by dashed lines.

atoms, one carboxyl O atom from each of two 5-hydroxyisophthalate anions and one aqua O atom. The apical position is occupied by one carboxyl O atom (O1), the corresponding axial bond length [2.274 (5) Å for Cu1-O1] being longer than the equatorial Cu1-O3ⁱ [1.942 (4) Å] and Cu1-O6 [1.974 (4) Å] bond lengths (Table 1). The two 5-hydroxyisophthalate carboxylate groups coordinate two copper(II) cations in μ_2 -bridging bidentate coordination modes. The Cu complex forms a centrosymmetric dimer with a Cu···Cu separation of 8.198 (3) Å.

The phenol H atom of the 5-hydroxyisophthalate anion is involved in an intermolecular $O-H\cdots O$ hydrogen bond (Table 2). The coordinated and free water molecules form hydrogen bonds, with the carboxylate O atoms as acceptors (Table 2). These interactions link the dimer units into a threedimensional network structure (Fig. 2).

Experimental

A solution of CuCl₂·2H₂O (0.5 mmol) and 5-hydroxyisophthalic acid (0.5 mmol) in a mixture of dimethylformamide and water (15 ml, 2:1 ν/ν) was added slowly to a solution of 1,10-phenanthroline (0.5 mmol) in methanol (5 ml). The mixture was left to stand at room temperature for about a month to afford blue crystals.

Crystal data

$Cu_2(C_8H_4O_5)_2(C_{12}H_8N_2)_2$ -	Z = 1
$(H_2O)_2]\cdot 3H_2O$	$D_x = 1.652 \text{ Mg m}^{-3}$
$M_r = 937.79$	Mo $K\alpha$ radiation
Friclinic, $P\overline{1}$	Cell parameters from 1209
$a = 7.2751 (10) \text{ Å}_{1}$	reflections
o = 10.4797 (14) Å	$\theta = 2.9-23.3^{\circ}$
= 12.7575 (17) Å	$\mu = 1.21 \text{ mm}^{-1}$
$\alpha = 97.482 \ (2)^{\circ}$	T = 293 (2) K
$B = 92.284 \ (2)^{\circ}$	Prism, blue
$\nu = 101.475 \ (2)^{\circ}$	$0.25 \times 0.16 \times 0.10 \text{ mm}$
$V = 942.9 (2) \text{ Å}^3$	

Data collection

Bruker APEX area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2002) $T_{min} = 0.752, T_{max} = 0.889$ 6956 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.084$ $wR(F^2) = 0.172$ S = 1.343383 reflections 296 parameters H atoms treated by a mixture of independent and constrained refinement $0.25 \times 0.16 \times 0.10 \text{ mm}$ 3383 independent reflections 3353 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 25.2^{\circ}$

 $\begin{aligned} &R_{\text{int}} = 0.027\\ &\theta_{\text{max}} = 25.2^{\circ}\\ &h = -8 \rightarrow 8\\ &k = -12 \rightarrow 12\\ &l = -15 \rightarrow 15 \end{aligned}$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0361P)^2 \\ &+ 4.7073P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\max} < 0.001 \\ \Delta\rho_{\max} = 0.91 \ e \ \mathring{A}^{-3} \\ \Delta\rho_{\min} = -1.16 \ e \ \mathring{A}^{-3} \end{split}$$

lable l	
Selected geometric	parameters (Å, °).

Cu1-O3 ⁱ	1.942 (4)	Cu1-N1	2.013 (5)
Cu1-O6	1.974 (4)	Cu1-O1	2.274 (5)
Cu1-N2	1.992 (5)		
O3 ⁱ -Cu1-O6	94.36 (18)	N2-Cu1-N1	82.1 (2)
O3 ⁱ -Cu1-N2	169.7 (2)	O3 ⁱ -Cu1-O1	94.25 (19)
O6-Cu1-N2	92.6 (2)	O6-Cu1-O1	90.84 (18)
O3 ⁱ -Cu1-N1	89.20 (19)	N2-Cu1-O1	93.33 (19)
O6-Cu1-N1	164.33 (19)	N1-Cu1-O1	104.13 (18)

Symmetry code: (i) 2 - x, 2 - y, 2 - z.

Hydrogen-bonding	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
O5−H5···O7 ⁱⁱ	0.82	1.88	2.673 (8)	164
$O6-H6B\cdots O2^{iii}$	0.82	1.85	2.645 (6)	164
$O6-H6C\cdots O4^{i}$	0.82	1.82	2.630 (6)	168
$O6-H6C \cdot \cdot \cdot O3^{i}$	0.82	2.46	2.872 (6)	112
$O8-H8B\cdots O2^{iv}$	0.80(3)	2.35 (7)	3.084 (11)	155 (14)
O8−H8C···O1	0.79 (3)	2.12 (4)	2.896 (10)	168 (15)
$O7 - H7B \cdot \cdot \cdot O2^{v}$	0.81 (3)	2.03 (3)	2.820 (8)	167 (8)
$O7-H7C\cdots O4^{vi}$	0.81 (3)	2.06 (3)	2.867 (8)	171 (7)

Symmetry codes: (i) 2-x, 2-y, 2-z; (ii) 1+x, y, z; (iii) x-1, y, z; (iv) 2-x, 2-y, 1-z; (v) x-1, y-1, z; (vi) 1-x, 1-y, 2-z.

H atoms attached to the C atoms were included in the refinement in calculated positions in the riding-model approximation $[C-H = 0.93 \text{ Å} \text{ and } U_{iso}(H) = 1.2U_{eq}(C)]$. The water H atoms were located in a difference Fourier map and refined with distance restraints $[O-H = 0.82 (3) \text{ Å}, H \cdots H = 1.39 (1) \text{ Å}]$ and with $U_{iso}(H) = 1.5U_{eq}(O)$. The maximum positive electron-density peak is located 0.97 Å from atom O3.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL* (Bruker, 2002); software used to prepare material for publication: *SHELXTL* (Bruker, 2002).

We acknowledge financial support by the Wenzhou Science and Technology Project of China (No. S2003A008).

References

- Bruker (2002). *SMART* (Version 5.618), *SAINT* (Version 6.02a), *SADABS* (Version 2.03) and *SHELXTL* (Version 5.03). Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sun, D. F., Cao, R., Liang, Y. C., Shi, Q., Su, W. P. & Hong, M. C. (2001). J. Chem. Soc. Dalton Trans. pp. 2335–2340.
- Xiao, H. P., Hu, M. L. & Li, X. H. (2004). Acta Cryst. E60, m336-m337.
- Xiao, H. P., Li, X. H., Ye, M. D. & Hu, M. L. (2004). Acta Cryst. E60, m253– m254.
- Zhu, L. G., Xiao, H. P. & Lu, J. Y. (2004). Inorg. Chem. Commun. 7, 94-96.